小辉网络社区致力于优质软件,活动线报,游戏辅助,绿色工具等资源共享,好货不私藏!

蚊子雷达追踪打击系统-源码

小辉工作室 其他辅助

基于OpenCV的蚊子雷达追踪打击系统(附完整Python源码)
import cv2
import numpy as np
import matplotlib
import math
from matplotlib import pyplot as plt
from matplotlib import rcParams
from matplotlib.animation import FuncAnimation
from collections import deque
from datetime import datetime
import time
import pygame
import os
import wave
import struct
 
# **添加以下两行设置后端**
matplotlib.use('Qt5Agg')  # 替换原有的'TkAgg'
 
# 在独立线程中运行Matplotlib动画
import threading
 
# 设置中文字体
rcParams['font.family'] = 'SimHei'
rcParams['axes.unicode_minus'] = False
 
 
# 生成驱蚊音频文件
def generate_anti_mosquito_sound():
    sample_rate = 44100  # 采样率:每秒采集44100个音频样本
    duration = 3.0  # 音频时长:3秒
    freq = 22000  # 频率:22000Hz(超声波,接近蚊子能感知的上限)
 
    samples = []
    for i in range(int(duration * sample_rate)):
        sample = 0.5 * math.sin(2 * math.pi * freq * i / sample_rate)
        samples.append(sample)
 
    filename = "mosquito_sound.wav"
    with wave.open(filename, 'w') as wf:
        wf.setnchannels(1)
        wf.setsampwidth(2)
        wf.setframerate(sample_rate)
        for sample in samples:
            data = struct.pack('<h', int(sample * 32767))
            wf.writeframesraw(data)
    return filename
 
 
# 初始化音频系统
try:
    pygame.mixer.init()
    sound_file = generate_anti_mosquito_sound()
    mosquito_sound = pygame.mixer.Sound(sound_file)
    print("已生成驱蚊音频文件")
except Exception as e:
    print(f"音频初始化失败: {e}")
    mosquito_sound = None
 
# 初始化雷达图
plt.style.use('dark_background')
fig = plt.figure(figsize=(10, 8), facecolor='black')
fig.suptitle('蚊子雷达追踪打击系统', color='lime', fontsize=16, fontweight='bold')
 
# 创建雷达主界面 - 改进的潜水艇风格
ax_radar = fig.add_subplot(121, polar=True, facecolor=(0, 0.05, 0))
ax_info = fig.add_subplot(122, facecolor='black')
ax_info.axis('off')
 
# 雷达图美化设置 - 军用风格
ax_radar.set_theta_zero_location('N')
ax_radar.set_theta_direction(-1)
ax_radar.set_ylim(0, 500)
ax_radar.set_yticklabels([])
ax_radar.grid(color='lime', alpha=0.2, linestyle='-')
ax_radar.spines['polar'].set_visible(False)
ax_radar.tick_params(axis='both', colors='lime')
 
# 添加雷达背景效果 - 同心圆网格
background_circles = []
for r in [100, 200, 300, 400, 500]:
    circle = plt.Circle((0, 0), r, transform=ax_radar.transData._b,
                        fill=False, color='lime', alpha=0.1, linewidth=0.5)
    ax_radar.add_artist(circle)
    background_circles.append(circle)
    ax_radar.text(0, r, f'{r}cm', color='lime', ha='center', va='center',
                  fontsize=8, alpha=0.7)
 
# 添加雷达中心点
center_point = ax_radar.scatter([0], [0], c='lime', s=50, alpha=0.8)
 
# 初始化雷达元素
scan_line = ax_radar.plot([], [], color='lime', linestyle='-', linewidth=2, alpha=0.9)[0]
scan_shadow = ax_radar.plot([], [], color='lime', linestyle='-', linewidth=8, alpha=0.1)[0]
mosquito_dots = ax_radar.scatter([], [], c='red', s=80, alpha=0.9,
                                 edgecolors='yellow', linewidths=1.5, zorder=10)
scan_arc = None
scan_arc_fill = None
trail_lines = []
 
# 初始化雷达数据
max_distance = 500
r = deque([0] * 360, maxlen=360)
theta = np.linspace(0, 2 * np.pi, 360, endpoint=False)
 
 
# 系统状态变量
class SystemState:
    def __init__(self):
        self.auto_sound = True  # 默认开启声波攻击
        self.sound_playing = False
        self.last_sound_time = 0
        self.total_detected = 0
        self.detected_today = 0
        self.start_time = datetime.now()
        self.screenshot_count = 0
 
 
system_state = SystemState()
 
 
# 初始化信息面板
def init_info_panel():
    titles = ["系统状态", "检测统计", "蚊子信息", "追踪数据", "声波设置"]
    contents = [
        [f"状态: 运行中", f"扫描中", f"摄像头: 开启", f"启动: {system_state.start_time.strftime('%H:%M:%S')}"],
        [f"当前: 0", f"今日: 0", f"最大: 0", f"平均: 0"],
        [f"速度: 0 cm/s", f"大小: 0 px", f"方向: -", f"距离: 0 cm"],
        [f"追踪: 0", f"历史: 0", f"误报: 0", f"准确率: 0%"],
        [f"声波驱蚊: 开启", f"按A键切换", f"截图: 按P键", ""]  # 修改显示文本
    ]
 
    title_y_positions = [0.92, 0.72, 0.52, 0.32, 0.12]
    content_line_height = 0.05
    title_content_gap = 0.02
 
    info_texts = []
    for i, (title, content) in enumerate(zip(titles, contents)):
        ax_info.text(0.1, title_y_positions[i], title,
                     color='cyan', fontsize=11, fontweight='bold',
                     transform=ax_info.transAxes)
 
        for j, item in enumerate(content):
            text = ax_info.text(0.15,
                                title_y_positions[i] - title_content_gap - j * content_line_height,
                                item,
                                color='lime', fontsize=9,
                                transform=ax_info.transAxes)
            info_texts.append(text)
 
    ax_info.text(0.5, 0.02, "By:Killerzeno", color='white', ha='center',
                 fontsize=14, fontweight='bold', style='italic',
                 transform=ax_info.transAxes)
    return info_texts
 
 
info_texts = init_info_panel()
 
# 初始化摄像头
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
 
# 边缘检测参数(可调整)
EDGE_THRESHOLD1 = 50  # Canny边缘检测低阈值
EDGE_THRESHOLD2 = 150  # Canny边缘检测高阈值
 
# 背景减法器用于运动检测
fgbg = cv2.createBackgroundSubtractorMOG2(history=100, varThreshold=16, detectShadows=False)
 
# 用于扫描动画的变量
current_angle = 0
scan_speed = 5
mosquito_count = 0
max_mosquito_count = 0
false_positives = 0
true_positives = 0
 
 
# 蚊子轨迹类
class MosquitoTrack:
    def __init__(self, id, x, y, time):
        self.id = id
        self.positions = [(x, y, time)]
        self.speeds = []
        self.directions = []
        self.last_update = time
        self.active = True
 
    def update(self, x, y, time):
        dx = x - self.positions[-1][0]
        dy = y - self.positions[-1][1]
        dt = time - self.last_update
        if dt > 0:
            speed = np.sqrt(dx ** 2 + dy ** 2) / dt
            direction = np.degrees(np.arctan2(dy, dx))
            self.speeds.append(speed)
            self.directions.append(direction)
 
        self.positions.append((x, y, time))
        self.last_update = time
        self.active = True
 
    def get_current_speed(self):
        return np.mean(self.speeds[-3:]) if len(self.speeds) > 0 else 0
 
    def get_current_direction(self):
        if len(self.directions) > 0:
            return self.directions[-1]
        return None
 
 
tracks = []
next_id = 1
 
 
def play_anti_mosquito_sound():
    if system_state.auto_sound and mosquito_sound:
        current_time = time.time()
        if current_time - system_state.last_sound_time > 5:
            try:
                mosquito_sound.play()
                system_state.last_sound_time = current_time
                system_state.sound_playing = True
            except Exception as e:
                print(f"播放音频失败: {e}")
 
 
def take_screenshot():
    screenshot_dir = "screenshots"
    if not os.path.exists(screenshot_dir):
        os.makedirs(screenshot_dir)
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    filename = f"{screenshot_dir}/screenshot_{system_state.screenshot_count}_{timestamp}.png"
    plt.savefig(filename)
    system_state.screenshot_count += 1
    print(f"截图已保存: {filename}")
 
 
def update_radar(frame):
    global current_angle, r, mosquito_count, max_mosquito_count
    global false_positives, true_positives, tracks, next_id
    global scan_arc, scan_arc_fill, trail_lines
 
    current_time = time.time()
 
    # 转换为灰度图像
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
 
    # 应用背景减法检测运动
    fgmask = fgbg.apply(gray)
 
    # 形态学操作
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
    fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel)
    fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_CLOSE, kernel)
 
    # 寻找轮廓
    contours, _ = cv2.findContours(fgmask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
 
    # 检测到的蚊子位置
    current_detections = []
    mosquito_info = []
 
    for contour in contours:
        area = cv2.contourArea(contour)
        perimeter = cv2.arcLength(contour, True)
 
        if 5 < area < 150 and perimeter > 10:
            (x, y), radius = cv2.minEnclosingCircle(contour)
            if 2 < radius < 20:
                circularity = 4 * np.pi * area / (perimeter ** 2) if perimeter > 0 else 0
 
                if circularity > 0.5:
                    center_x = x - frame.shape[1] // 2
                    center_y = y - frame.shape[0] // 2
 
                    angle = np.arctan2(center_y, center_x) % (2 * np.pi)
                    distance = np.sqrt(center_x ** 2 + center_y ** 2)
                    distance = min(distance, max_distance)
 
                    current_detections.append((x, y, angle, distance, area, radius))
 
    # 多目标跟踪
    active_tracks = [t for t in tracks if t.active]
    matched = [False] * len(current_detections)
 
    for track in active_tracks:
        min_dist = float('inf')
        best_match = None
 
        for i, (x, y, _, _, _, _) in enumerate(current_detections):
            if not matched[i]:
                last_x, last_y, _ = track.positions[-1]
                dist = np.sqrt((x - last_x) ** 2 + (y - last_y) ** 2)
 
                if dist < 50 and dist < min_dist:
                    min_dist = dist
                    best_match = i
 
        if best_match is not None:
            x, y, angle, distance, area, radius = current_detections[best_match]
            track.update(x, y, current_time)
            matched[best_match] = True
            mosquito_info.append((angle, distance, track))
            true_positives += 1
        else:
            false_positives += 1
 
    # 创建新轨迹
    for i, (x, y, angle, distance, area, radius) in enumerate(current_detections):
        if not matched[i]:
            new_track = MosquitoTrack(next_id, x, y, current_time)
            tracks.append(new_track)
            mosquito_info.append((angle, distance, new_track))
            next_id += 1
            system_state.total_detected += 1
            system_state.detected_today += 1
 
    # 标记不活跃的轨迹
    for track in active_tracks:
        if current_time - track.last_update > 0.5:
            track.active = False
 
    # 更新雷达数据
    mosquito_count = len([t for t in tracks if t.active])
    max_mosquito_count = max(max_mosquito_count, mosquito_count)
 
    # 播放驱蚊声
    if mosquito_count > 0:
        play_anti_mosquito_sound()
 
    # 更新扫描线效果
    current_angle = (current_angle + scan_speed * 2) % 360  # 加快扫描速度
    scan_rad = np.radians(current_angle)
 
    # 主扫描线
    scan_line.set_data([scan_rad, scan_rad], [0, max_distance])
 
    # 扫描线尾迹
    trail_length = 30
    trail_angles = np.linspace(scan_rad - np.radians(trail_length), scan_rad, 10)
    scan_shadow.set_data(trail_angles, [max_distance] * 10)
 
    # 更新扇形扫描区域
    if scan_arc is not None:
        scan_arc.remove()
    if scan_arc_fill is not None:
        scan_arc_fill.remove()
 
    scan_width = 30
    scan_start = np.radians(current_angle - scan_width) % (2 * np.pi)
    scan_end = np.radians(current_angle + scan_width) % (2 * np.pi)
 
    # 扇形边框
    scan_theta = np.linspace(scan_start, scan_end, 50)
    scan_arc = ax_radar.plot(scan_theta, [max_distance] * 50,
                             color='lime', alpha=0.5, linewidth=1)[0]
 
    # 扇形填充(渐变效果)
    scan_r = np.linspace(0, max_distance, 50)
    scan_theta, scan_r = np.meshgrid(scan_theta, scan_r)
    scan_theta = scan_theta.flatten()
    scan_r = scan_r.flatten()
 
    angle_diff = np.abs((np.degrees(scan_theta) - current_angle + 180) % 360 - 180)
    alphas = np.where(angle_diff < scan_width, 1 - angle_diff / scan_width, 0)
    colors = np.zeros((len(scan_theta), 4))
    colors[:, 1] = 1.0
    colors[:, 3] = alphas * 0.1
 
    scan_arc_fill = ax_radar.scatter(scan_theta, scan_r, c=colors, s=2,
                                     edgecolors='none', zorder=0)
 
    # 更新蚊子标记
    if mosquito_info:
        angles, distances, tracks_info = zip(*mosquito_info)
        sizes = [50 + 30 * math.sin(time.time() * 10)] * len(angles)  # 脉冲效果
        colors = ['red' if t.active else 'orange' for t in tracks_info]
        mosquito_dots.set_offsets(np.column_stack([angles, distances]))
        mosquito_dots.set_sizes(sizes)
        mosquito_dots.set_color(colors)
    else:
        mosquito_dots.set_offsets(np.empty((0, 2)))
 
    # 更新轨迹线
    for line in trail_lines:
        line.remove()
    trail_lines = []
 
    if mosquito_info:
        for angle, distance, track in mosquito_info:
            if len(track.positions) > 1:
                # 主轨迹线
                history_angles = []
                history_distances = []
                for i in range(max(0, len(track.positions) - 5), len(track.positions)):
                    x, y, _ = track.positions[i]
                    center_x = x - frame.shape[1] // 2
                    center_y = y - frame.shape[0] // 2
                    angle = np.arctan2(center_y, center_x) % (2 * np.pi)
                    distance = np.sqrt(center_x ** 2 + center_y ** 2)
                    history_angles.append(angle)
                    history_distances.append(distance)
 
                if len(history_angles) > 1:
                    # 主轨迹线
                    main_line = ax_radar.plot(history_angles, history_distances,
                                              color='cyan', alpha=0.7,
                                              linewidth=1.5, zorder=5)[0]
                    trail_lines.append(main_line)
 
                    # 轨迹尾迹
                    trail_alpha = 0.3
                    for i in range(1, 4):
                        if len(history_angles) > i:
                            trail_line = ax_radar.plot(
                                history_angles[-i - 1:-i],
                                history_distances[-i - 1:-i],
                                color='white', alpha=trail_alpha,
                                linewidth=2 + i, zorder=4 - i)[0]
                            trail_lines.append(trail_line)
                            trail_alpha *= 0.7
 
    # 更新信息面板
    accuracy = true_positives / (true_positives + false_positives) * 100 if (
                                                                                    true_positives + false_positives) > 0 else 0
 
    info_texts[0].set_text(f"状态: 运行中")
    info_texts[1].set_text(f"扫描中")
    info_texts[2].set_text(f"摄像头: 开启")
    info_texts[3].set_text(f"启动: {system_state.start_time.strftime('%H:%M:%S')}")
 
    info_texts[4].set_text(f"当前: {mosquito_count}")
    info_texts[5].set_text(f"今日: {system_state.detected_today}")
    info_texts[6].set_text(f"最大: {max_mosquito_count}")
    info_texts[7].set_text(
        f"平均: {system_state.total_detected / ((time.time() - system_state.start_time.timestamp()) / 3600):.1f}/h")
 
    if mosquito_info:
        _, _, track = mosquito_info[0]
        speed = track.get_current_speed()
        direction = track.get_current_direction()
        dir_text = f"{direction:.1f}°" if direction is not None else "-"
 
        info_texts[8].set_text(f"速度: {speed:.1f} px/s")
        info_texts[9].set_text(f"大小: {track.positions[-1][2]:.1f} px")
        info_texts[10].set_text(f"方向: {dir_text}")
        info_texts[11].set_text(f"距离: {distance:.1f} cm")
    else:
        info_texts[8].set_text(f"速度: 0 px/s")
        info_texts[9].set_text(f"大小: 0 px")
        info_texts[10].set_text(f"方向: -")
        info_texts[11].set_text(f"距离: 0 cm")
 
    info_texts[12].set_text(f"追踪: {len(tracks)}")
    info_texts[13].set_text(f"历史: {system_state.total_detected}")
    info_texts[14].set_text(f"误报: {false_positives}")
    info_texts[15].set_text(f"准确率: {accuracy:.1f}%")
 
    sound_status = "开启" if system_state.auto_sound else "关闭"
    playing_status = "(播放中)" if system_state.sound_playing else ""
    info_texts[16].set_text(f"声波驱蚊: {sound_status} {playing_status}")
    info_texts[17].set_text(f"按A键切换")
    info_texts[18].set_text(f"截图: 按P键")
 
    return [scan_line, scan_shadow, mosquito_dots, scan_arc, scan_arc_fill,
            *trail_lines, *info_texts]
 
 
# 创建动画
def update(frame):
    ret, frame = cap.read()
    if not ret:
        return []
 
    frame = cv2.flip(frame, 1)
 
    # 灰度处理与边缘检测
    gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    blurred = cv2.GaussianBlur(gray_frame, (5, 5), 0)
    edges = cv2.Canny(blurred, EDGE_THRESHOLD1, EDGE_THRESHOLD2)
 
    # 寻找轮廓
    contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
 
    # 创建空白图像用于绘制轮廓
    edge_display = np.zeros_like(frame)
    cv2.drawContours(edge_display, contours, -1, (0, 255, 0), 1)
 
    artists = update_radar(frame)
 
    # 显示窗口
    cv2.imshow('Mosquito Tracking', cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
    cv2.imshow('Edges', edge_display)  # 显示轮廓绘制结果
 
    key = cv2.waitKey(1)
    if key & 0xFF == ord('q'):
        ani.event_source.stop()
        cap.release()
        cv2.destroyAllWindows()
        plt.close('all')
        return []
    elif key & 0xFF == ord('a'):
        system_state.auto_sound = not system_state.auto_sound
    elif key & 0xFF == ord('p'):
        take_screenshot()
 
    if system_state.sound_playing and not pygame.mixer.get_busy():
        system_state.sound_playing = False
 
    return artists
 
 
# 开始动画
try:
    # 启动时自动播放一次声波
    if system_state.auto_sound and mosquito_sound:
        mosquito_sound.play()
        system_state.sound_playing = True
        system_state.last_sound_time = time.time()
 
    ani = FuncAnimation(fig, update, frames=None, interval=30, blit=True, cache_frame_data=False)
    plt.tight_layout()
    plt.show()
except Exception as e:
    print(f"程序错误: {e}")
finally:
    if 'cap' in locals() and cap.isOpened():
        cap.release()
    cv2.destroyAllWindows()
    plt.close('all')

温馨提示:如有转载或引用以上内容请将本文链接作为出处标注!百度未收录

免责声明:本站提供的一切软件、教程和内容信息仅限用于学习和研究目的;不得将上述内容用于商业或者非法用途,否则,一切后果请用户自负。本站信息来自网络,版权争议与本站无关。您必须在下载后的24个小时之内,从您的电脑或手机中彻底删除上述内容。如果您喜欢该程序,请支持正版,购买注册,得到更好的正版服务。侵删请致信E-mail:431228450@qq.com

标签 暂无标签
资源分享
评论列表